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In this paper we present a method for predicting the spread of perturbations in Boolean networks. The
method is applicable to networks that have no regular topology. The prediction of perturbations can be
performed easily by using a presented result which enables the efficient computation of the required iterative
formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the
method is applied to show the spread of perturbations in networks containing a distribution of functions found
from biological data. The advances in the study of the spread of perturbations can directly be applied to enable
ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be
computed and thus distributions of functions compared with each other with respect to the amount of order
they create in random networks.
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I. INTRODUCTION

Boolean networks are a class of simple discrete dynamical
systems that have been used, e.g., in connection with studies
on genetic regulatory networks �1� and evolutionary prin-
ciples �2�. Boolean networks are interesting since they con-
sist of simple deterministic parts, but yet they give rise to
complex emergent phenomena. The phase transition from or-
der to chaos in particular has been studied �3–8�.

The parameter values at which the phase transition from
order to chaos occurs in random Boolean networks �RBNs�
were first derived using an annealed approximation �4�. In
this approximation the connections between nodes and the
update functions at each node are selected randomly after
each time step. This is in contrast to quenched networks in
which the network connections and update functions remain
constant as the state of nodes is updated. The results for
RBNs obtained using the annealed approximation can be
seen to hold for quenched networks as well, hence the inter-
est in this approximation.

The so-called Derrida plots were first discussed in the
context of annealed approximation as mappings that describe
the average distance between two points in the state space at
time t+1 selected at different initial distances at time t �4,5�.
It was found that the behavior of perturbations in random
networks can be correctly predicted for RBNs using only this
mapping iteratively. Numerical experiments with Derrida
plots have since been performed �9,10�. The slope of the
Derrida plot at the origin is often used as a chaoticity mea-
sure for network dynamics. It can be seen, however, that it
provides only a first-order approximation of what happens as
perturbations are studied in networks with update functions
from arbitrary distributions. Better ways of quantifying
chaos are therefore needed. One approach for doing this is
presented in Ref. �11�, in which influences of functions are
used to study arbitrary distributions of functions with similar
goals as in this paper.

Fourier analysis of Boolean functions has been used for
decades and it has found applications in, e.g., switching
theory �12,13�. These applications include logic design and
fault detection �14�. Fault detection in particular has close
relations with the Derrida plot since consequences of bit flips
in the state are considered in both cases. In coding theory it
is of interest to examine codes that are error correcting. In
this application the so-called Krawtchouk polynomials are
used �15�. These polynomials can be seen to arise also in the
spectral decomposition of Derrida plots. In Ref. �12� the
equivalent of the Derrida plot for single Boolean functions is
called the generalized sensitivity. In this work we choose to
use the terminology from Boolean networks.

Since the amount of points in the state-space grows expo-
nentially with the network size N, numerical studies on Der-
rida plots typically use random sampling of the state-space.
This gives rise to inaccuracies in the results and the amount
of computation needed for a good approximation can be sig-
nificant.

In Ref. �12� a special case of the current spectral result is
presented in which the perturbations are computed over one
time step only. In addition, only single functions, not net-
works, are discussed in that context. This result for Boolean
networks along with a practical approximation is presented
in Ref. �16�. In this paper similar methods are used to track
the perturbations over an arbitrary number of time steps. Ap-
proximations that apply to large networks are utilized. Based
on the result presented Derrida plots over an arbitrary num-
ber of time steps can be computed with a better accuracy
than has been possible up to now.

II. THE ABSTRACT FOURIER TRANSFORM

Denote B= �0,1�. The set F of all real functions on the
hypercube BN, F= �f :BN→R�, is a 2N-dimensional real vec-
tor space with an inner product defined by

�f ,g� =
1

2N 	
x�BN

f�x�g�x� .

Denote the ith component of vector w by wi and for each
w�BN let W�w�= �i� �1,2 , . . . ,N� 
wi=1�. Denote 
w
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=	iwi. For each w�BN a Fourier transform kernel function
Qw :BN→ �−1,1� is defined as the parity function over the
corresponding subset W�w� of variables,

Qw�x� = �− 1�wTx = �− 1�	i�W�w�xi.

�Qw 
w�BN� is an orthonormal basis for F �12�. Let f :BN

→B. The abstract Fourier transform �in this context also the
name Walsh transform is used� of Boolean function f is the
rational valued function f* :BN→Q which defines the coor-
dinates of f with respect to the basis �Qw 
w�BN�, i.e.,

f*�w� = �Qw, f� =
1

2N	
x

Qw�x�f�x� .

f can then be reconstructed from the coefficients as

f�x� = 	
w

f*�w�Qw�x� .

The fast Walsh transform can be used to calculate the Fourier
coefficients and thus also the Fourier spectrum efficiently
�12,17�.

III. ITERATIVE FORMULAS FOR PERTURBATION
IN BOOLEAN NETWORKS

Boolean network F :BN→BN is a directed graph with N
nodes. Each node is assigned a binary output variable and a
Boolean function, whose inputs are the nodes from which
there is an arc to the node in question. The network nodes are
updated synchronously.

We study the effect of perturbations in the state of the
network. At each time instant t denote by bt the proportion of
bits in the state that are equal to 1 and by �t the proportion of
bits in the state that are affected by the perturbation in the
initial state at time t=0. Let

C1 = C1�b,�� = �bN

�N

2
���1 − b�N

�N

2
� ,

C2 = C2�b� = 
 N

bN
� ,

and

C = C�b,�� = 	
x:


x
=bN

	
y:
y
=�N


x�y
=bN

1 = C1�b,��C2�b� .

For an infinite network the proportion of ones in the network
updates according to the expected probability that inputs are
selected such that we get an output of one,

bt+1 = Ef
 	
x�BK

f�x�bt

x
�1 − bt�K−
x
� , �1�

where the expectation is taken with respect to the function f
and K is the effective in-degree of f .

We propose that the number of perturbed bits in the state
is modeled as changing as follows:

�t+1 = Ef� 1

C
	
x:


x
=btN

	
y:
y
=�tN


x�y
=btN

f�x� � f�x � y��
=

1

C
	
x:


x
=btN

	
y:
y
=�tN


x�y
=btN

Ef�f�x� � f�x � y�� . �2�

That is, the number of bits in the perturbation changes as it
would on average given that both the nonperturbed �x� and
the perturbed �x � y� state have a proportion of ones given by
iterative equation �1� but are otherwise selected randomly.
Together formulas �1� and �2� can be used to model the
spread of perturbations in time. Note that since exactly the
same proportion of ones, bt, is required for both states, for
finite N only perturbations of sizes �t=0/N ,2 /N , . . . are pos-
sible whereas bt can take any of the values
0/N ,1 /N , . . . ,N /N.

The main simplifications in the model are twofold. First,
we assume that the network is of infinite size or that the
network model is annealed, which means that the connec-
tions between nodes in the network are generated randomly
at each time t. This assumption enables us to compute bt and
�t using a mean-field approach where the outputs of indi-
vidual functions are replaced by distributions of outputs from
distributions of functions. Whereas the resulting approxima-
tion can be used for large networks with random connec-
tions, this approach is not as such applicable, e.g., for cellu-
lar automata with regular topologies.

All kinds of regular structures in the topology can result
in problems with the approximation. One way of describing
these kinds of cases is considering local neighborhoods in
which the values of the nodes will affect their own future
value more than other nodes because of the connection struc-
ture of a part of the network. Mean-field approximation is
thus only a first-order approximation of the dynamics of real
genetic regulatory networks since the topology of regulatory
networks is not likely to be without local structures. A way to
quantify the difference between the annealed approximation
and real networks would be to compare cell dynamics with
the predictions of network dynamics obtained with the cur-
rent method from the distributions of regulatory functions
described in the literature. With suitable data this should be
possible in the future. The difference observed between the
predictions and the dynamics could be considered as evi-
dence of topological regularities in the network.

As a second simplification, only expected values of bt and
�t are studied. It turns out, however, that for the N→� cases
considered here this limitation is not important. This is due
to the fact that the distributions of bt and �t are typically
rather close to the ones obtained with this assumption of
independent nodes and the mean is enough to predict the
propagation of perturbations. We do not know, however, if
this holds for all cases. Evidence of the usability of the cur-
rent approach is thus mainly based on numerous simulations
with different kinds of functions. Only a part of these simu-
lations is presented in this paper.

The model assumes that both the initial and the perturbed
state have the same bias. If the initial state has an average
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bias of one-half, as we have in the definition of ordinary
Derrida plots, this condition holds on average. In general, if
we study large perturbations from arbitrary initial state bi-
ases, the condition will not hold exactly and the predictions
cannot be expected to be accurate unless the perturbations
are created according to the bias requirements of the model.
For the application of the current method to ordinary Derrida
plots over several time steps discussed here this difference is
thus not significant.

We have defined �2� as a model for spread of perturba-
tions in time. In order to use this formula for computational
purposes, we need to be able to do that efficiently. This is
possible using the following result and the expected spec-
trum of the functions in the network. If f :BN�B is a Bool-
ean function with K essential variables and f* is the Fourier
transform of f with redundant variables removed, then

1

C
	
x:


x
=bN

	
y:
y
=�N


x�y
=bN

f�x� � f�x � y� → 2 	
w�BK

f*�w��1 − 2b�
w


− 2 	
w�BK

	
u�BK

f*�w�f*�u��1 − 2��uTw�1 − 2b�u�w

as N→�. A proof for this result can be found in the Appen-
dix.

Perturbations propagate in infinite networks according to
what follows if we apply the previous result to �2�,

�t+1 = 2	
i=0

K

si�1 − 2bt�i − 2	
i=0

K

	
j=0

K

Si,j�1 − 2�t�i�1 − 2bt� j ,

�3�

where

si = E
 	

w
=i

f*�w�� ,

Si,j = E� 	
�u,w�:

wTu=i


w�u
=j

f*�w�f*�u�� ,

K is the maximum in-degree of functions in the network, �t
is the size of the perturbation at time t, and bt is the bias of
the states at time t. This result can be used to compute the
spread of perturbations in Boolean networks with any distri-
bution of functions over an arbitrary number of time steps.

IV. APPLICATIONS

The model we have for the spread of perturbations can
now be tested with any given distribution of functions. For
finite networks average spectrum values should be used in-
stead of the expectation. In the case of a finite network the
results are not exact but the approximation is quite good. For
comparison purposes we compute in each test case the
spread of perturbations with simulations in quenched net-
works randomly generated with the same distribution of
functions. Random states with bias 1

2 and random perturba-
tions of selected size are chosen and the network is run for-
ward in time for the desired number of time steps. The av-
erage perturbation size resulting from a selected number of
initial pairs of states is plotted as a dotted line in Figs. 1 and
2.

Figure 1 shows the spread of perturbations for two differ-
ent networks. On the left-hand side, the perturbations are
computed for a network with functions corresponding to the
distribution of the 139 Boolean functions in Ref. �18�. These
functions were found by studying publications containing in-
formation on genetic regulation and the resulting test net-
work can thus be considered representative of real biological
networks. From the figure it can be seen that the network is
indeed stable as the perturbations vanish quite rapidly.

On the right-hand side, the network is created as a mix-
ture of four updating rules, f1�x�=x1�x2 � x3�+x1x2x3, f2�x�
=x1x2+x1x2x3, f3�x�=x2x3+x1x2x3, and f4=x1�x2 � x3�+x2x3.
A numerical result is computed for comparison such that it
has 35 nodes with f1, 35 nodes with f2, 35 nodes with f3, and

FIG. 1. �Color online� Spread
of perturbations in two test cases.
On the left-hand side, the network
is created with function distribu-
tion taken from Ref. �18� and on
the right-hand side with a mixture
of the four functions given in the
text. Solid lines denote the results
computed with the spectral
method and dotted lines the ones
obtained by random sampling of
the states and perturbations. Net-
work size for the numerical ex-
periment is N=139.
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34 nodes with f4 for a total of 139 nodes. The results using
the spectral method are computed using the corresponding
weights on the spectrum. In this case, small perturbations
tend to increase initially but since �1� converges to zero this
is only temporary. For both cases the numerical results are
close to the ones computed with the spectral method.

Figure 2 shows the results if we use the same networks to
compute Derrida plots over several time steps. In the Derrida
plots the initial bias is set to one-half. In the latter case it is
of interest to note that as more time steps are taken, the slope
at the origin increases initially but then approaches zero. This
shows in practice how the slope of the ordinary Derrida plot
with initial bias of one-half computed over one time step
only is not a sufficient measure of chaos in general despite its
common use. Derrida plots computed numerically over sev-
eral time steps can be used for such purposes. In the compu-
tation of these Derrida plots over several time steps the
method presented here can give superior accuracy with given
computational resources. For the images shown here the nu-
merical result, the dotted line, takes at least 10 times as long
to compute as the spectral version and still has clearly too
much variance to be useful.

The Derrida plots over several time steps can thus be
easily computed for networks of any functions with a suit-
able in-degree and thus chaos in networks quantified with
increased accuracy as compared with the previous measures
like the slope of the standard Derrida plot. The fixed points
of the iterative mappings from Derrida plots over several
time steps can be used as improved approximations of the
real fixed points and thus also the distinction between or-
dered and chaotic networks can be made with a greater ac-
curacy �4�. As a first-degree approximation a network can be
called ordered if the simple Derrida plot has a stable fixed
point at the origin. If chaoticity is quantified with Derrida
plots over several time steps there are networks that have a
stable fixed point at zero even though the first-degree ap-
proximation would not suggest this. There are therefore
cases in which the method gives a different classification of
networks than simpler approximations and is consequently
significant in practice.

The slope of the Derrida plot at the origin is related to the
so-called average sensitivity of Boolean functions �16�. As
discussed in Ref. �11� the bias at which the sensitivity of
Boolean functions to perturbations is studied is significant.
The choice of initial bias of one-half in the example cases
here is made mainly for convenience of comparison with
previous usage of the Derrida plot. If we want to study the
long-term behavior that is decisive for chaoticity we need to
study the sensitivity of Boolean functions for small perturba-
tions at the fixed point of the bias. This is the limiting value
of bt that is obtained as t→�. Note that there need not nec-
essarily be such convergence for an arbitrary selection of
functions but in practice there typically is such a fixed point.
It can be verified numerically that the current approach can
predict the long-term behavior of perturbations at bias fixed
point with a good accuracy. The changing bias of the state
can be seen to be highly relevant to Boolean network dynam-
ics as the predictions are made more accurate for Derrida
plots computed at the bias fixed point as compared with the
Derrida plots at bias 1

2 .

V. DISCUSSION

The method presented enables the efficient prediction of
spread of perturbations in a large network with arbitrary
functions if the in-degree is bounded by a reasonably small
K. Alternatively, results can be obtained for such classes of
functions for which the expected values of spectrum param-
eters can be computed particularly easily. This is significant
in at least two respects.

First, the Derrida plots over an arbitrary number of time
steps presented in Sec. IV are an example of applications that
enable an improved quantification of chaos in Boolean net-
works. New hypotheses on chaoticity of regulatory networks
in nature can be tested as suitable data emerge. Since arbi-
trary classes of functions can now easily be compared with
each other, the approach promises to enable more thorough
analysis of different types of functions that have been pro-
posed as the basis of large in-degree ordered networks found
in e.g., biological systems in nature. The classes of functions
under consideration include, e.g., canalyzing �19� and Post
functions �9�.

FIG. 2. �Color online� Derrida
plots for the test cases of the pre-
ceding figure computed over i
time steps. Solid lines denote the
results computed with the spectral
method and dotted lines the ones
obtained by random sampling of
states and perturbations. Network
size for the numerical experiment
is N=139.
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Second, the method could help in problems such as count-
ing attractors in random networks or determining their aver-
age length. Relations between the spectral computation of
spread of perturbations and attractors are an interesting focus
of further work in this area. Our method has the benefit of
easy application with any types of functions so that any ad-
vance towards the attractor problem would simultaneously
give answers to questions on many different kinds of net-
works.

It can be seen that for ordinary RBNs �4� Si,j =0 for j
�0. Thus the perturbation mapping �3� reduces to the ordi-
nary Derrida plot for RBNs. This is consistent with the fact
that the Derrida plot in the original annealed approximation
predicts perturbations in RBNs correctly. It should also be
noted that for any function f Si,j =0 if i+ j�K, where K is
the number of inputs of f .

Since the number of spectral coefficients goes up as 2K

with the in-degree K, there are still limits on the in-degree
that can be used in the network, although in-degrees up to at
least 10 are still quite efficient in all cases. In order to com-
pute the spread of perturbations for networks with some
number of nodes with larger in-degrees special techniques
are needed. Since, e.g., scale-free networks have a significant
number of nodes with a large in-degree it is of great interest
to extend the current methods to these cases as well. Another
area of further work will be in studying special cases of
interesting functions for which the computation of the spec-
tral parameters needed in the iterative equation �2� can be
done efficiently.

APPENDIX: PROOF FOR THE SPECTRAL FORM
OF THE ITERATIVE FORMULA

�A1�

With spectral decomposition the first double sum can be
written as

�A2�

We will first compute B1. Denote c=uTx and d=uT�1−x�,
c+d= 
u
. �−1�uTy will be one when an even number of ones
in y overlap ones in u and minus one otherwise. By dividing
the ones of y into those that overlap with ones in x and those
that do not we obtain the number of even uTy’s,

	
j odd

	
i odd


c

i
�
d

j
��bN − c

�N

2
− i ���1 − b�N − d

�N

2
− j �

+ 	
j even

	
i even


c

i
�
d

j
��bN − c

�N

2
− i ���1 − b�N − d

�N

2
− j � .

We can approximate the product of the two binomial coeffi-
cients containing N if we take the constant C1 from B1,

1

C1�
bN − c

�N

2
− i ���1 − b�N − d

�N

2
− j �

=
�bN − c�!

�bN�!
��1 − b�N − d�!

��1 − b�N�!

�


�N

2
�!


�N

2
− i�!

�
b −
�

2
�N�!

�
b −
�

2
�N − c + i�!

�


�N

2
�!


�N

2
− j�!

�
1 − b −
�

2
�N�!

�
1 − b −
�

2
�N − d + j�!

.

As N→� we have
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1

C1

c

i
�
d

j
��bN − c

�N

2
− i ���1 − b�N − d

�N

2
− j �

→ 
c

i
�
d

j
��

�

2b

1 −
�

2b
�

i

�
�

2�1 − b�

1 −
�

2�1 − b�
�

j

�
1 −
�

2b
�c
1 −

�

2�1 − b��
d

.

In order to sum these over odd or even i and j, note that the
z transform for a sequence of the form si= � A

i
�ai is

S�z� = 	
i

siz
i = �1 + az�A. �A3�

The sums for odd and even indices can now be easily com-
puted,

	
i even

si =
1

2
�S�1� + S�− 1�� �A4�

and

	
i odd

si =
1

2
�S�1� − S�− 1�� . �A5�

Applying these to the above limit formulas, and noting that
we can get the result by multiplying the number of even
uTy’s by 2 and subtracting the total number of y’s to sum
over C1, we obtain

B1 =
1

C1
	

y:
y
=�N


x�y
=bN

�− 1�uTy

→
1

2
�1 − 
1 −

�

b
�c��1 − 
1 −

�

1 − b
�d�

+
1

2
�1 + 
1 −

�

b
�c��1 + 
1 −

�

1 − b
�d� − 1

= 
1 −
�

b
�c
1 −

�

1 − b
�d

= 
1 −
�

b
�uTx
1 −

�

1 − b
�
u
−uTx

.

Substituting this to the latter part of formula �A2� and sum-
ming over all x with constant g=uTx at a time we get

We will next compute B3, the summation over x in this for-

mula. For x with given 
x
=bN and uTx=g we will have an
even wTx for any choice of x such that i ones of x are from
the uTw bits that are one in both u and w, j ones of x are from
the 
w
−uTw bits which are one in w and zero in u, and that
both i and j are odd or both are even. In addition, the other
ones of x will have to be selected such that the two given
conditions for b and g both hold. In this way the summation
can now be written as

B3 = 	
x:
x
=bN

xTu=g

�− 1�wTx

= 2 	
i even

	
j even

G�i, j� + 2 	
i odd

	
j odd

G�i, j� − 	
i

	
j

G�i, j� ,

�A6�

where

G�i, j� = 
uTw

i
�

u
 − uTw

g − i
�

w
 − uTw

j
�

�
N − 
u
 − 
w
 + uTw

bN − g − j
� .

We can again use an approximation as N→�, since

1

C2

N − 
u
 − 
w
 + uTw

bN − g − j
�

=
�N − 
u
 − 
w
 + wTu�!

N!

�bN�!
�bN − g − j�!

�
��1 − b�N�!

��1 − b�N + g + j + wTu − 
u
 − 
w
�!

→ 
 b

1 − b
�g
 b

1 − b
� j

�1 − b�
u
+
w
−wTu.

Using this and summing over j in �A6� we get

B2 =
1

C
	
x:


x
=bN

�− 1��u + w�Tx 	
y:
y
=�N


x�y
=bN

�− 1�uTy

→ 
1 −
�

1 − b
�
u


�1 − b�
u
+
w
−wTu	
g

 � − b

1 − b − �
�g

�� 	
i even

H�i��
1 +
b

1 − b
�
w
−uTw

+ 
1 −
b

1 − b
�
w
−uTw�

+ 	
i odd

H�i��
1 +
b

1 − b
�
w
−uTw

− 
1 −
b

1 − b
�
w
−uTw�

− 	
i

H�i��1 − b�
w
−uTw� ,

where
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H�i� = 
uTw

i
�

u
 − uTw

g − i
� .

We can now change the order of summation and sum over g
if we in addition to �A3� note that the z transform of sn�
=sn+m is

S��z� = S�z�zm.

We now get

B2 → �1 − b − ��
u

1 +
� − b

1 − b − �
�
u
−uTw

�� 	
i even


uTw

i
��1 + �1 − 2b�
w
−uTw�
1 − b − �

� − b
�i

+ 	
i odd


uTw

i
��1 − �1 − 2b�
w
−uTw�
1 − b − �

� − b
�i

− 	
i

uTw

i
�
1 − b − �

� − b
�i� .

By summing over i we have

B2 → �1 − b − ��
u
�1 + q�
u
−uTw

��1

2
�1 + �1 − 2b�
w
−uTw���1 + q�uTw + �1 − q�uTw�

+
1

2
�1 − �1 − 2b�
w
−uTw���1 + q�uTw

− �1 − q�uTw� − �1 + q�uTw� ,

where

q =
� − b

1 − b − �

so that

B2 → �1 − 2b�
u
�1 − 2b�
w
−uTw
1 − 2�

1 − 2b
�uTw

= �1 − 2��uTw�1 − 2b�
u�w
.

This means that we can now write the entire sum of �A2� as

A1 → − 2 	
w�BK

	
u�BK

f*�w�f*�u��1 − 2��uTw�1 − 2b�
u�w
.

We still need to compute the other two sums in �A1�. Similar
approximations as previously used can be applied again. In
the first one y only occurs in the indices,

A2 =
1

C
	
x:


x
=bN

	
y:
y
=�N


x�y
=bN

f�x� =
1

C2
	
x:


x
=bN

f�x� = 	
w�BK

f*�w�
1

C2
	
x:


x
=bN

�− 1�wTx = 	
w�BK

f*�w��2 	
i even



w

i
�
N − 
w


bN − i
�


 N

bN
� − 1�

→ 	
w�BK

f*�w��2�1 − b�
w
 	
i even



w

i
�
 b

1 − b
�i

− 1� = 	
w�BK

f*�w���1 − b�
w
�
1 +
b

1 − b
�
w


+ 
1 −
b

1 − b
�
w
� − 1�

= 	
w�BK

f*�w��1 − 2b�
w
.

For the last sum remaining we need to sum by using variable g as in the double sum,

A3 =
1

C
	
x:


x
=bN

	
y:
y
=�N


x�y
=bN

f�x � y� =
1

C
	

w�BK

f*�w� 	
x:


x
=bN

�− 1�wTx 	
y:
y
=�N


x�y
=bN

�− 1�wTy

→
1

C2
	

w�BK

f*�w� 	
x:


x
=bN

�− 1�wTx
1 −
�

b
�wTx
1 −

�

1 − b
�
w
−wTx

=
1

C2
	

w�BK

f*�w�
1 −
�

1 − b
�
w


	
g �

�

b
− 1

1 −
�

1 − b
�

g

	
x:
x
=bN

wTx=g

1

= 	
w�BK

f*�w�
1 −
�

1 − b
�
w


	
g �

�

b
− 1

1 −
�

1 − b
�

g

w

g
�
N − 
w


bN − g
�


 N

bN
� → 	

w�BK

f*�w��1 − b − ��
w
	
g


w


g
�
 � − b

1 − b − �
�g
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= 	
w�BK

f*�w��1 − b − ��
w

1 +
b − �

1 − b − �
�
w


= 	
w�BK

f*�w��1 − 2b�
w
.

Thus we have the result,

1

C
	
x:


x
=bN

	
y:
y
=�N


x�y
=bN

f�x� � f�x � y� → 2 	
w�BK

f*�w��1 − 2b�
w
 − 2 	
w�BK

	
u�BK

f*�w�f*�u��1 − 2��uTw�1 − 2b�
u�w


as N→�.
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